Proceedings of the 2023 Winter Simulation Conference
C. G. Corlu, S. R. Hunter, H. Lam, B. S. Onggo, J. Shortle, and B. Biller, eds.

COSIMLA WITH GENERAL REGENERATION SET TO COMPUTE MARKOV CHAIN
STATIONARY EXPECTATIONS

Peter W. Glynn Zeyu Zheng
Department of Management Science and Engineering Department of Industrial Engineering and
Stanford University Operations Research
475 Via Ortega University of California, Berkeley
Stanford, CA 94305, USA 4125 Ethcheverry HAIl

Berkeley, CA 94709, USA

ABSTRACT

We extend the COSIMLA approach (short for “COmbined SIMulation and Linear Algebra”) recently
developed in Zheng, Infanger, and Glynn (2022) to compute stationary expectations for Markov chains
with large or infinite discrete state space. Our work follows the idea of combing the best of linear algebra
and simulation—using linear algebra to compute the “center” of the state space and using simulation to
compute the contributions from outside of the “center”. Different from Zheng, Infanger, and Glynn (2022)
that needed to fix a single regeneration state, our work develops a new method that allows the use of a
flexible regeneration set with a finite number of states. We show that this new method allows more efficient
computation for the COSIMLA approach.

1 INTRODUCTION

Many modeling applications involve discrete state space Markov chains. This paper concerns the computation
of steady-state expectations, or equivalently saying, stationary expectations, for Markov chains with a discrete
state space. When the state space is finite and has a moderate size, one can compute the stationary distribution
through numerically solving a system of linear equations, and then compute the stationary expectations
through a linear algebra operation. This is well documented, for example, in Heyman and Sobel (2004)
and Asmussen (2008). However, when the state space becomes large or includes countably infinite many
states, such computation becomes intractable or impossible.

On the other hand, Monte Carlo simulation can be used to compute stationary expectations for discrete
space Markov chains. The use of simulation is feasible even when the state space is infinite. The challenge
of simulation is the excessive amount of replications needed, especially when one desires a high accuracy.

A recent work Zheng, Infanger, and Glynn (2022) proposes the method of COSIMLA, short for
“COmbined SIMulation and Linear Algebra”. That paper provides the first efficient numerical method that
combines the best aspects of numerical linear algebra and simulation. For COSIMLA, numerical linear
algebra is used to analyze the “center” of the state space, while simulation is used to estimate contributions
to the stationary expectations from path excursions outside the “center”. In particular, COSIMLA can
be viewed as using simulation to enhance the truncation-based linear algebra method for Markov chain
computations; see Seneta (1980), Kuntz, Thomas, Stan, and Barahona (2021) for prior work on truncation-
based approximation schemes for Markov chains with infinite or large state space.

In this work, we extend the COSIMLA approach discussed in Zheng, Infanger, and Glynn (2022) for
the computation of Markov chain stationary expectations. That paper proposes a COSIMLA approach
that uses path excursions that start from a fixed regeneration state z, and stop when the chain returns to
z. In this work, we extend the COSIMLA approach, so that the method can exploit path excursions that
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start in a finite subset K contained within A, and that stop when the chain returns to K. This extension
can sometimes significantly reduce the simulation’s computational effort, since the simulation is no longer
required to follow the path all the way back to the state z, and can instead terminate when it hits K.

2 COMPUTATIONAL TASK AND SETTING

We are concerned with the computation of stationary expectations for Markov chains. The setting is as
follows. Denote X = (X, : n > 0) as an irreducible positive recurrent Markov chain with discrete state space
S. Denote P = (P(x,y) : x,y € S) as the one step transition matrix. Due to irreducible positive recurrent,
there exists a unique stationary distribution, denoted as © = (7(x) : x € §), encoded as a row vector. The
stationary distribution 7 satisfies the following linear system of equations

T =rnP.

Denote r = (r(x) : x € S) as a reward function, encoded as a column vector. Without loss of generality, we
presume that r(x) € R, for each x € S. In this work, we consider a computation task where P and r are
given and the goal is to compute the stationary expectation

r= Z m(x)r(x).

BYSA)

When the state space S is small, this computation would be a simple two-step procedure. First, one solves
for w from the linear system of equations & = mP. Then, one computes the inner product of 7 and r
through a simple linear algebra operation. However, when the state space S becomes large or infinite, such
procedure will become computationally intractable or impossible. This work concerns the computation
task when the state space S is large or infinite.

3 OUR APPROACH

Choose K C A C S with |A| < oo, where K is a non-empty “regeneration” subset, and A, the “truncation”
subset, has a size such that linear systems involving |A| equations and |A| unknowns can be tractably
numerically computed. Denote A’ =A—K ={x € S:x €A, x ¢ K}. The follow plot illustrates the relative
connections among the set K, set A, and set S. Figure 1 gives an illustration of the relationships of these
sets.

Set K

Set A

Set S

Figure 1: Illustration of sets S, A, and K.

For any x € S, denote P,(-) be the probability on the space of X conditioned on Xy = x. Denote E,(-) as
its associated expectation. We specify three items of notation to facilitate the discussion of our approach.
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e Tx=inf{n>0:X, €K}
e T=inf{n>0:X, €A}
* D={ycA°:P(Xr=y) >0 for some x €A}

For x,y € K, define Px = (Px(x,y) : x,y € K) as Px(x,y) = Pi(X7, =y). Let mx = (ng(x) : x € K) be a
distribution on K such that mgPx = mg. With the goal to compute @ =Y g7 (x)r(x), we note that

EnK Z]TK()] r(X;)
Eﬂk‘ TK ’

where Eg, () is denoted such that for any non-negative function g defined on the path-space of X,

B (8(X)) = Exex Tk (x) Ex(g(X)).

For x € K, put
Tx—1
x) =E, Z r(X;)
j=0
(TATx)—1 Tx—1
=E. )Y rX)+ )Y PXr=yT<TxE Y r(X
j=0 yeD j=0
2 a(rx —|—2ny w(ry).
yeD
That is, we define
(TATx)—1
a(r,x) =E, Z r(X;),
j=0
F(x,y) =P(Xr =y,T < Tx)
Tx—1

We also write that a(r) = (a(r,x) : x € K), encoded as a column vector, F = (F(x,y) :x € K,y € D) as a
|K| x |D| matrix, and w(r) = (w(r,y),y € D) as a column vector.
In order to compute the numerator and denominator, we also need to compute 7gx. Note that

PK(x>y) = Px(XTK :y)

=P(Xg, =y, Tx <T)+ Y Pi(Xr =2, T < Tx)P.(X7, = y)
zeD

That is, we denote

A~(X7y) = PX(XTK =) TK < T)7
[:I(Zvy) :PZ(XTK :)’),
H

and write A = (A(x,y) : x,y € K) and H = (H(z,y) : 2 € D,y € K) as the corresponding matrices.
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Next we compute a(r), F, and A through linear algebra operations. For a(r) = (a(r,x) : x € K), we
observe that for any x € K,

(T/\T]()—l
a(r,x) = E, Z r(X;)
j=0
(T/\T]()—]
=r(x)+ ) Px,yE, Y r(X)
yeA! j=0
If we denote

ri=(r(x):x €K)

rp=(r(x):xeA’)
Pll = (P(xay) Xy € K)
P =(P(x,y):xeK,ycA)
P22 = (P(X,y) Xy €A )a

we have that

a(r) =r +Po(I —Pn)"'r,

Also,

F = Pi3+ Pia(I— Py) ' P,
where

Pi3 = (P(x,y):x€K,y€D)

Py = (P(x,y):x€ A,y e D).
Also,

A=Pi+Pa(I—Pyn) Py,
where

Py = (P(x7y) ZXGA/,yEK)-

Fix e = (e(x) : x € S) where e(x) = 1 for all x. For the terms w(r), w(e), and H, we compute by Monte
Carlo simulation. That is, for each y € D, we simulate n independent sample paths of X conditional on
Xo € D, where each path stops at Tk, the regeneration time to set K. Denote W, (r), W, (e), H,, respectively,
for the estimators for Ww(r), Ww(e), H using n independent replications of simulation.

Now we can have an estimator for Px, given by

p[{ =A + FI:I”.
We compute a distribution 7, on K as

T, = 7, Px.
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So, we arrive at an estimator for o, given by
_ Tta(a(r) + Fwy(r))
" mi(ae) + Fivy(e))’

For x,y € K, define Ilx = (Tlx(x,y) : x,y € K) as Ig(x,y) = mx(y). That is, I is a matrix with size
|K| x |K| where each row is identical to mx. We note that

m,—n=n(Px—Pg)(I—Px+T) "' = nF(H, —H)(I — Px +11;) "

D

So,
TF (W (r) — o (e)) + wF (H, — H)(I — Px +11;) "' (a(r) — aa(e) + F (w(r) — avi(e)))
m(a(e) + Fw(e))

which enables us to construct central limit theorem for the estimator.

o, — 0 = +0,(n"1/?),

4 NUMERICAL EXAMPLE

In this section, we present two parts of numerical experiments to demonstrate the performance of our approach
for computing Markov chain stationary expectations. In the first part, we consider a one-dimensional birth-
death Markov chain. In the second part, we consider a two-dimensional queueing network. In particular,
we demonstrate the comparison of our approach that allows a flexible size of regeneration set, compared
to the approach in Zheng, Infanger, and Glynn (2022) that only allows the regeneration set to contain a
single state. Zheng, Infanger, and Glynn (2022) conducted numerical experiments on a one-dimensional
birth-death Markov chain, but not on a two-dimensional queueing network.

4.1 One-dimensional Brith-death Markov Chain

For this subsection, we adopt the same underlying model and notation as Zheng, Infanger, and Glynn
(2022). For completeness, we re-iterate the model setup. Consider a discrete-time Markov chainon S =7Z_,
in which the state X = (X, : n > 0) evolves according to the stochastic recursion

Xn+1 = [Xn +Zn+1 - 1]+7

where [x]* = max(x,0) and the Z,’s are independent and identically distributed (iid) with P(Z; = 0) =g,
P(Zi =1)=1—p—gq, and P(Z; =2) = p. This Markov chain can describe the number-in-system process
for a slotted time queue in which the system can serve 1 customer in each time slot, and Z, | represents
the number of customers arriving at the beginning of slot n+ 1. The one step transition matrix P of X is
a tri-diagonal matrix given by

1—p p 0 0 0
g 1-(p+q) p 0 0

p=| 0 q 1—(p+q) p 0 :
0 0 q l—(p+q) p

where g > p>0and p+¢g < 1.

For parameter settings, we adjust the ratio p = p/q where p+¢q = 1. We adjust two parameters k and
M, and consider the truncation set A = {0,1,...,M} and the regeneration set as K = {0, 1,...,k}. We use
n to demonstrate the number of independent replications for the simulation part of the estimator.

For each given parameter setting, we present the mean square error (MSE) and the mean wall-clock
time to generate one estimator. The wall-clock time, which is sometimes referred to as elapsed real time,
is the actual time taken by the computer to compute an estimator. The means are computed via 1000
replications for each estimator.

473



Glynn and Zheng

4.1.1 Small Truncation Set

We first present a group of numerical results when the truncation set M is relatively small, taking value in
the range of 10 to 500. In this case, the time for linear algebra computation is much smaller compared to
the time for simulation. We focus on the comparison across different choices of k for the regeneration set
as K={0,1,...,k}. A larger k then means a larger regeneration set.

Table 1 to Table 6 present results from a mixed choices of p, M, n, and each table includes multiple
choices of k. Particularly, note that when k = 0, it exactly corresponds to the estimator given by Zheng,
Infanger, and Glynn (2022). We have the following core observation.

*  When M is relatively small, for fixed p,M,n, the larger k is, the less mean wall-clock time the
algorithm takes, while maintaining a stable level of MSE.

Table 1: Estimator performance with p = 0.8, M = 10, n = 1000.

Estimator/Performance Mean squared error Mean wall-clock time (seconds)

k=0 481 %1073 0.136
k=1 519 %1073 0.099
k=2 453 %1073 0.095
k=3 5.18x 1073 0.086
k=4 524 %1073 0.083

Table 2: Estimator performance with p =0.95, M = 100, n = 200.

Estimator/Performance Mean squared error Mean wall-clock time (seconds)

k=0 9.45x 1073 0.717
k=5 9.37x 1073 0.698
k=10 598 x 1073 0.672
k=15 8.14x 1073 0.649
k=20 1.01 x 1072 0.623

Table 3: Estimator performance with p = 0.8, M = 20, n = 250.

Estimator/Performance Mean squared error Mean wall-clock time (seconds)

k=0 7.69 x 10~* 0.049
k=2 8.54x 10~* 0.047
k=4 7.81 x 1074 0.041
k=6 7.64 x 1074 0.036
k=8 7.54x10* 0.032
k=10 6.90 x 10~* 0.028
k=12 7.35x 1074 0.023
k=14 7.43 x 1074 0.018
k=16 7.77 x 1074 0.014

4.1.2 Large Truncation Set

We then consider experiments with relatively large M. Different from the small M situation, now the time
for the linear algebra computation starts to match the time for the simulation computation. Because the
mean wall-clock time includes both the linear algebra (LA) time and the simulation time, we present related

474



Glynn and Zheng

Table 4: Estimator performance with p =0.75, M = 100, n = 200.

Estimator/Performance MSE Mean wall-clock time (seconds)
k=0 1.91x 1075 0.353
k=10 1.85x 10723 0.322
k=30 1.83x 1073 0.243
k=50 1.58 x 1072 0.180

Table 5: Estimator performance with p =0.95, M = 200, n = 50.

Estimator/Performance MSE Mean wall-clock time (seconds)
k=0 7.78 x 107° 0.363
k=10 7.70 x 107° 0.351
k=20 7.88 x 1076 0.335
k=30 7.89 x 107° 0.345
k=40 7.29 x107° 0.299
k=50 7.65 % 1076 0.273
k=60 7.83%107° 0.257
k=70 7.90 x 107° 0.240

Table 6: Estimator performance with p =0.99, M = 500, n = 50.

Estimator/Performance MSE Mean wall-clock time (seconds)

k=0 1.33 4.77
k=125 1.28 4.47
k=50 1.27 4.13
k=175 1.35 3.99
k=100 1.53 3.83
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information. Table 7 presents an illustration of results by varying choices of k. The mean time is computed
via 50 replications. As we see from Table 7, as one would anticipate, the linear algebra time increases as k
becomes larger and the simulation time decreases as k becomes larger. The mean wall-clock time, in this
example, decreases when k becomes larger but seems to stabilize when k becomes closer to M.

Table 7: Estimator performance with p =0.99, M = 2000, n = 200.

Estimator/Performance MSE Mean LA time Mean simulation time Mean wall-clock time
k=500 1.01 x 10712 0.29 73.41 73.70
k= 1000 6.81 x 10713 1.29 45.89 47.18
k= 1500 8.57x 10713 2.98 18.13 21.11
k= 1700 3.83x 10713 435 13.56 17.90
k= 1800 3.22x 10713 4.99 9.65 14.64
k= 1900 2.99 x 10713 6.09 5.41 11.50
k=1925 3.86x 10713 6.26 4.08 10.33
k= 1950 533x 10713 7.93 3.64 11.57

4.2 Two-dimensional Queueing Network

In this section, we consider a discrete-time two-node independent queueing network where the state space
S=7Zy X Z,. For any (a,b) € S, the state represents that there are a jobs in node 1 and b jobs in node 2.
The jobs transition matrix given by

0 1 0
1—p1 0 pi
1 0 0

To be specific, when a job arrives at the network, it will directly go to node 1. When a job departs
from node 1, it will go to node 2 with probability p; and leave the network with probability 1 — p;.
When a job departs from node 2, it will directly leave the network. Besides, we presume that, in each
discrete time period, a job arrives at the network with probability p. The two nodes are each single
server queue themselves. The transition probability is given by P((a,b),(a+ 1,max(b—1,0))) = p,
P((a,b),(max(a—1,0),max(b—1,0))) = (1 —p;)(1 —p) and P((a,b),(max(a—1,0),b+1)) = pi(1—p)
for arbitrary (a,b) € S. The utilization of the two nodes are given by, respectively, u; = p and u = ; j;p ~ o

We choose the reward function r = r(x,y) = x+y, which represents the total jobs in the network. In
this case, the stationary expected reward is given by

ui uz
o =T7r= + .
1—M1 1—M2

(@)

For our approach, we consider two parameters k and M with 0 < k < M. The truncation set is
A={(a,b):a+b <M} and the regeneration set is K = {(a,b) : a+b < k}. When k = 0, our approach
reduces to that of Zheng, Infanger, and Glynn (2022) with singleton regeneration set. The goal of following
numerical results is to compare estimator performance for different choices of k.

Table 8 to Table 12 give the numerical results. We have the following observations.

1. The linear algebra time increases as the choice of k and M increases. Note that when k = 100, there
are about 5000 different states in the regeneration set. A k x k matrix then has 24502500 elements.
We observe that the linear algebra time can become intractable even when k becomes moderately
large.

2. The mean squared error (MSE) does not show an obvious pattern of dependence on the choice of
k.
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3. As one would anticipate, with all else equal, the larger the k, the longer the mean linear algeba
(LA) time and the smaller the mean simulation time.

4. For relatively small utilization rates, we find that the larger k is, the smaller the total wall-clock
time.

5. For relatively large utilization rates, we find that when k increases, the mean total wall-clock time
may first decrease and then then increase, suggesting that in terms of mean total time, one may
find an optimal choice of k that is smaller than M. It seems that such optimal choice of & is likely
to be when the mean simulation time equals the mean LA time, but we need more evidence and
theory to be able to formally make this claim.

Table 8: Estimator Performance with M = 10, n = 1000, u; = 0.8, up = %

Estimator/Performance MSE Mean wall-clock time Mean simulation time Mean LA time
k=0 4.61x1073 0.661 0.661 8.80 x 107
k=1 4.96 x 1073 0.613 0.612 457 x 10~
k=2 532%x1073 0.579 0.578 5.95x 10~
k=3 499 x 1073 0.511 0.511 3.38x 1074
k=4 5.35%x 1073 0.464 0.463 4.10 x 10~*
k=5 5.13x 1073 0.409 0.408 4.54 %10~
k=6 551x1073 0.359 0.358 5.33x 107

Table 9: Estimator Performance with M = 20, n = 250, u; = 0.8, u, = 0.5.

Estimator/Performance MSE Mean wall-clock time Mean simulation time Mean LA time
k=0 8.54x 10°* 0.424 0.424 1.45x10*
k=2 8.34 x10~* 0.393 0.392 417 x 1074
k=4 7.96 x 104 0.369 0.369 3.52x 1074
k=6 7.96 x 1074 0.346 0.345 6.99 x 10~*
k=8 7.97 x 10~* 0.319 0.316 2.96x 1073
k=10 7.47 x 1074 0.293 0.288 434 %1073

Table 10: Estimator Performance with M =40, n =200, u; = 0.8, u, =0.5.

Estimator/Performance MSE Mean wall-clock time Mean simulation time Mean LA time
k=0 6.38 x 1077 0.729 0.727 1.91x 1073
k=28 5.51x 1077 0.677 0.672 539%x 1073
k=16 470 x 1077 0.594 0.566 0.028
k=24 5.83x 1077 0.522 0.444 0.078
k=28 5.88 x 1077 0.510 0.369 0.142
k=32 5.26 x 1077 0.520 0.271 0.249
k=736 3.78 x 1077 0.597 0.185 0.412
k=40 4.84 x 1077 0.735 0.065 0.670

5 CONCLUSION

In this work, we develop a method that extends the COSIMLA approach to allow the use of a general
regeneration set. We provide analysis for this method and run numerical experiments to demonstrate the
improved efficiency brought by the developed method.
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Table 11: Estimator Performance with M = 50, n = 200, u; = 0.95, u, = 0.5.

Estimator/Performance = MSE Mean wall-clock time Mean simulation time Mean LA time

k=0 0.342 6.73 6.72 5.80x 1077
k=5 0.390 6.53 6.52 1.26 x 1072
k=10 0.415 5.94 5.92 1.45x 1072
k=15 0.382 5.57 5.55 2.32x 1072
k=20 0.395 4.98 4.93 4.98 x 102
k=25 0.473 4.46 4.36 0.100

k=30 0.439 3.88 3.69 0.189

Table 12: Estimator Performance with M = 100, n = 200, u; = 0.95, up, = 0.9.

Estimator/Performance = MSE  Mean wall-clock time Mean simulation time Mean LA time

k=0 0.0093 32.30 32.13 0.167
k=10 0.013 29.34 29.19 0.156
k=20 0.018 28.54 28.36 0.182
k=30 0.015 27.20 26.89 0.308
k=40 0.013 27.60 26.81 0.790
k=50 0.010 27.31 25.26 2.051
k=60 0.0083 28.36 23.40 4.961
k=170 0.012 31.72 20.69 11.03
k=80 0.012 39.20 15.54 23.66
k=90 0.014 53.85 11.01 42.83
k=100 0.017 79.04 5.18 73.86
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